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THE DISTANCE FUNCTION OF A PRODUCTION STRUCTURE
by

Ronald W. Shephard

1. DEFINITION OF THE DISTANCE FUNCTION

Consider a production structure with a production function ¢(x) defined on

D= {x | x >0, xc¢ R"} having the properties:

Al ¢(0) =0 .

A.2 (x) 1s finite for x finite.

A3 o(x") > ¢(x) for x' > x .

A4* If x>0, 0or x>0 and ¢(lx) > 0 for some X > 0C ,
d(Ax) > » as A > o ,

A.5 ¢(x) 1is upper semi-continuous on D .

A.6 &(x) 1s quasi-concave on D .
As shown in [3], the level sets L(u) = {x | ¢(x) >u, x € D} have the properties:

P.1 L) =D, 0 ¢ L(u) for u>20.

P.2 If x e L(u and x' >x, then x' e L(u)

P.3 If x>0,o0r x>0 and (Ax) € L(u) for some X >0 and
u>0, the ray {ix | A > 0} intersects all level sets L(u) ,
u e [(0,»)

F.4  L(u,) CL(u) 1if u, > u

P.5 " L(w =L(u) for any u >0 .
O<u<u, o

*
Xx>y=>x>y but x#y.



P.6 N L(u) 1is empty.
ue [0,)

P.7 L(u) 1is closed for any u e (0,»)

P.8 L(u) 1is convex for any u e [0,»)

Starting with the production possibility sets L(u) , i.e., for any output rate
u € [0,#) the subset of D for which output rate is equal to or greater than u ,
the properties P.1, ... P.8 are technological assumptions for a general structure

of production, and a unique function ¢(x) = Max u may be defined on the sets

L(u)Dx
L(u) which has the properties A.l, ... A.6. (See [3].) This definition leads

to the classical production function.

For reasons of studying the relationships between cost functions and production
functions, it is convenient to define another function on the level sets L(u)
which serves to give an alternative definition of a production function. This
function is an adaption for the production possibility sets L(u) of the
Minkowski distance function for convex bodies* [2].

The factor input domain D may be partitioned into mutually exclusive and

exhaustive subsets as follows:

{0}

D, = {x | x > 0}

n
D, = ix | x >0, ? X, = 0

where Dl is the set of interior points of D and {0}V D2 comprises the

boundary of D . Further D2 may be partitioned into

*
A bounded convex closed set in R" is a convex body.



Dl' = {x | x e D, , (Ax) € L(u) for some u >0 and X > 0}

D2" = {x | xeD, , (Ax) ¢ L(u) for all u>0 |, A > 0} .

All points of D2 belong to either D2' or D2" , since if (Ax) € L(u) for
gsome u >0 and X > 0, then for each u > 0 there isa )X > 0 such that

(Ax) € L(u) by virtue of the property P.3. Thus
= \J "
D {0}y D1 ) D2 v D:2

where {0} , D D.' , D" are mutually exclusive.

1 72 2
A nonnegative distance function Y(u,x) 1is defined on D for the level sets

L(u) , ue [0,°) by

Y(u,x) = 1 (1)

where

£ = on and Ao = Min » for Ax e L(u) . (2)

If x ¢ DILJ DZ' , it follows from the property P.3 that the ray
{xx | A > 0} intersects all production possibility sets L(u) , u € [0,®) ---
and for any u > 0 the intersection £ exists with [|£|| >0 , since L(u)
is closed (p.7) and £ # 0 by P.1. Note that if x ¢ DZ' the ray {Xx | A > 0}
intersects the sets L(u) only on their boundaries, but the definition (2) implies
that the intersection § with smallest norm is used in (1) (see Figure 1).

When x ¢ {0} U D2" , the ray {ix | A > 0} is either not defined for x =0
or fails to intersect each set L(u) , u > 0 ; however, zero is a natural value
for Y(u,x) 1in both cases, which may be seen by considering the perturbed points
(x" + 4) , (0+ A) where A ¢ leJ Dz' , and taking the limit as A » O through

!
points of D,V D," . In fact



{0}k‘JD2'

L(u) , u>20
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£ = {lnx}
- -_._
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u, o __‘}E;'._A....__-- - —= {0} U D2

FIGURE 1: INTERSECTIONS OF A LEVEL SET L(u) BY RAYS FROM THE ORIGIN
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¥(u , x" +4) = M "™+ T

and, as A+ 0 , IIAO"(x" +8)|{ *= so that Y¥(u, x" + A) > 0 , because if the

lim ||A°"(x" + A)|| were finite the point (Ao"x") ¢ L(u) due to the closure of
A+0

L(u) , contrary to the definition of the set D2" . Also, for x =0,

[[o + al]
AO(O+A)H

W(U ’ 0+ A) - l]

ard, as A >0, ||0+ A||] » 0 while IIAO(O + 4)|| 1is bounded away from zero
since £ ¢ 0 by P.1.

“The foregoing definition of a distence function for each set L(u) , u> 0,
does not iiave the properties of the Minkowskl distance function, because 0 is
not an interior point of che level set L(u) , the set L(u) 1is not bounded and
the distance function is super-additive. However, it is suitable for our purposes,
since we are not concerned whether Y¥(u,x) has the sub-additive property of the
Minkowski distance function.

With the definition of V¥(u,x) given by (1) and (2), the production possibility

sets L(u) may be expressed by:

Proposition 1: For any u ¢ [0,)

L(u) = {x | ¥(u,x) 21, K¢ R"} , u>0
' (3)
L(0) = D

Clearly, if x ¢ L(u) then ¢ < x and ++%++ >1 . Also, if x ¢ L(u) and
X € DILJ D2' , then x < £ and ++%++ <1, and when x ¢ {0} U D," ,

Y(u,x) = 0 <1, Thus , x € L(u) for u > 0 1if and only if V¥(u,x) >1 . For

u =0, we merely use property P.1 to define L(0)



The boundary points of the sets L(u) are conveniently expressed by:

Proposition 2: The boundary points of the production possibility sets L(u) ,

u € [0,») are characterized by:

For u > 0, x € Boundary L(u) 1if and only if VY(u,x) =1
when x ¢ D, and ¥(u,x) >1 when x € D2' . For u=0,

{o} v D2 is the boundary of L(0) .

If u>0, it is clear from the definition of D1 and DZ' and property P.1,
that the boundary points of a set L(u) , u > 0 belong to either D, or D2'
When x € D1 and x € Boundary L(u) , then £ = x and V¥(u,£) =1 : also
Y(u,x) = 1 implies & = x . However, when x ¢ Dz' , points Ax where X > Xo
belong to the Boundary L(u) , since the ray {ix | A > 0} coincides with L(u)

for A > Ao by virtue of property P.2.



2. PROPERTIES OF THE DISTANCE FUNCTION V¥ (u,x)

The properties of Y¥(u,x) are given by the following proposition:

Proposition 3: If the production possibility sets L(u) have the properties

P.1, ... P.8, then for any u > 0

D.1 Y¥(u,x) = 0 for all x ¢ {0} LJDZ" :

D.2 Y(u,x) is finite for finite x € D and positive for all
x € DU D, .

D.3  ¥(u,Ax) = A¥(u,x) for A >0 and all x e D .

D.4 ¥(u,x+y) > ¥(u,x) + ¥(u,y) for all x, yeD.

D.5  ¥(u,x') > Y(u,x) 1if x' >xeD.,

D.6 Y¥(u,x) 1is a concave function of x on D .

D.7 ¥(u,x) 1is a continuous function of x on D .

D.8 For any x ¢ D, Y(uz,x) < ¥(up,x) 1f u, > u, > 0.

D.9 For any x ¢ D, inf Y(u,x) = 0 .

u-»

D.10 If there exists for & > 0 an open neighborhood
N(0) = {x I ||x|| <8, x € D such that x ¢ L(u) for any u >0

when x e N(0) , then sup ¥(u,x) 1s bounded for all x € D , other-
u->0

wise V¥(u,x) 1is surely bounded only for x ¢ {0} U D2" as u-~>0 .
D.11 For any x ¢ D, ¥(u,x) 1is an upper semi-cont’-mous function of u

for all u ¢ (0,») .

Property D.l1 is merely a restatement of the second part of the definition 1.
For x € Dl\J D2' . [|x|| > 0 and finite for finite x : also ||£|| >0,
since by P.1 £E$#0 for u>0 . Hence Y¥(u,x) 1s finite for finite x and

positive for x € D, UD,' .



Property D.3 holds when x ¢ D, UD," and X > O , because

since the intersection £ 1is fixed for all A > 0 and ¥(u,0) = 0 ; if
x e {0}V D2" , Y(u,xx) = \¥(u,x) = 0 for all A > 0 , because by the definition
of D2" it follows that (Ax) e {0} U D2" when x e {0} L)Dz" . Thus
¥(u,x) 1s linear homogeneous and D.3 holds for all x € D .
For the verification of property D.4, note first that 1f x , y ¢ DIL) DZ'

then by D.2 Y¥(u,x) >0, ¥(u,y) > 0 and by D.3

X v )
¥y (u R 77;:;;) -=1’(u ’ GK;T;T) =17,

belong to L(u) , and since L(u)

, x y
, 1
By Proposition 1 the points ¥Y(u,x) * ¥(u,y) °’

is convex by P.8 it follows that the point

- N, S Pl A
El 9) ¥(u,x) e W(u,y)]

belongs to L(u) for any scalar 6 satisfying 0 < 8 <1 . Then by Proposition

A

1 it follows that

- 2. DL e
¥ (u , (1 - 86) ¥ (i) + 6 W(u,y)) > 1

for all 6 ¢ [0,1] . Take

= ¥(u,y)
¥Y(u,x) + ¥Y(u,y)

and use propérty D.3 to obtain

Y(u , x +y) 2 ¥(u,x) + ¥(u , y) V x,yeD UV DZ' .



When x and y belong to {0} L)Dz" , ¥(u,x) = ¥(u,y) = 0 by D.1 and the in-
equality still holds since Y¥(u , x +y) > 0 . Finally, if one point (say vy )
belongs to {0} kJDz" and the other (say x ) belongs to D U D2' , then

Y(u,y) = 0 by D.1 and V¥(u,x) > O by D.2. Then by property P.2 if follows that

that the point ;%;i;¥ belongs to L(u) and by Proposition 1 we have
1

x+y)
Wél, W(u,x)) 2 1,

which implies
Y(u , x +y) 2 ¥(u,x) = ¥(u,x) + ¥(u,y)

due to the homogeneity cf ¥(u,x) . Thus the distance function is super-additive

on D.

Property D.5 is a simple consequence of D.4 and the nonnegativity of the dis-
tance function, because x' = x + Ax where Ax = (x' - x) >0 and
¥(u,x") > ¥(u,x) + ¥(u,sx) > ¥(u,x)

The concavity of Y¥(u,x) on D, i.e., property D.6, follows directly from

the super-additivity and homogeneity properties merely by taking x = (1 - #)z ,

y = 6w for any 6 ¢ [0,1] and any z , w € D to obtain
¥(u, (1 -8)z+ 6w > (1 - 6)¥(u,z) + 6¥(u,w)

The continuity in x of the distance function on the closed set D (D.7)
may be established as follows: First, for any u > 0 the function y(u,x) is
continuous on the interior of D , i.e., for x ¢ Dl , by virtue of a well known
theorem that ¢ convex function defined on a convex open set in R" is continuous
on this open set (see [1], pl93), since (-¥(u,x)) 1is convex on tne ovuen convex

set D1 . Second regarding the boundary of D , i.e., for x ¢ 0tV D, Y(u,x)



10

is lower semi-continuous (see Theorem, p31, [3]) . But the distance function is

also upper semi-continuous for x ¢ {0} U D because for any u > 0 and any

2 ]

value v ¢ [0,») , the set
x | ¥(u,x) > v, x¢ R} , u>0

is closed, which is an if aud only if condition for the upper semi-continuity of
¥(u,x) on D (see [1], p76]). The closure of the level sets of vy(u,x) for any

u >0 1is established as follows:
{x | Y(u,x) >0, x ¢ R"} = L.(0) ,

since ¥(u,x) > 0 for any u > 0 and all x ¢ D, and L(0) 1is closed. For

v>0

{x|W(u,x)>v,xeRn}={'§|‘+’(u,§-)>1,l('eRn}

due to the homogeneity of the distance function, and letting y = % it follows

by Propositior 1 that

{y | ¥(u,) 21,y eR'} = L(u
Since L(u) 1is closed (p.7), it follows that

x| ¥(u,x) > v, xeR},v>0

is closed. Thus VY(u,x) 1is both lower and upper semi-continuous on {0} U D2
and therefore continuous on the boundary of D .
Regarding the nonincreasing property (D.8) of V¥(u,x) in u , for any

x € D, suppose first that x € DI\J D2' and u, > u Then by the property P.4

2 1

of the sets L(u) , L(u2) C'L(ul) , and letting El and 52 denote the inter-

sections of the ray {ix | A > 0} with L(ul) and L(uz) respectively, it
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follows that £, S & » ||£1|| < ||£2|| and ?(uz,x) s W(ul,x) . If
x ¢ {0} LJDZ" , then by D.1 W(uz,x) = W(ulx) = 0 and the inequality is still
satisfied.

For the property D.9 note first that V¥(u,x) = 0 for all u > 0 when
x e {0}V D2” . If xeD L)Dz' , the intersection £(u) for any u 1lies on the
ray {Xx | A2 0} , and ||£(u)|| cannot be bounded as u +» = otherwise
E(u) » ¢, finite, since the sequence {£(u)} 1is nondecreasing and bounded above,
which implies that there exists a finite point 50 e D which belongs to all
level sets L(u) for u ¢ [0,») by P.4, contrary to P.6. Consequently,

E(u) > » as u -+ > for any X ¢ D1\J D2' and by the definition (1) it follows
that Y(u,x) >0 as u > ., Hence inf ¥(u,x) = 0 for any x € D .

Considering now property D.10, asu*: + 0 the intersection £(u) 1is non-
increasing when x ¢ le) D2' , and unless there exists for ¢ > 0 an open
neighborhood N(0) = {x ||x|] < 6, x € D} such that x ¢ L(u) for any u > 0
when x € N(o) , {€(u)} may - 0 with V¥(u,x) > as u-> 0. When x ¢ L(u)

for all u >0 1if x e N(0) , sup ¥(u,x) 1is bounded, since inf £(u) > O .
u>0 u-+0

Also Y¥(u,x) = 0 for all u>0 when x ¢ {0}V D2" and sup Y(u,x) is evi-
u-+0

dently bounded in this case. Thus D.10 holds.

Regarding property D.1ll, note first that y(u,x) = 0 for all u e (0,»)
if xe {0} D2' (see definition (1)), and the distance function is evidently
continuous in this case. Z2But when x ¢ DIKJ D2' a different situation arises.
By counter example it may be seen that the distance function is not always lower
semi-continuous. Consider the following example: ¢(x) 1is a nondecreasing step
fucntion, where x 1is a vector of dimension one, i.e., x e R , as illustrated
in Figure 2. This production function is upper semi-continuous and satisfies all
of the assumptions A.1l, ... A,6. The corresponding distance function is only

upper semi-continuous as shown in Figure 3. For any (i <u < i + 1) where
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FIGURE 2: UPPER SEMI-CONTINUOUS PRODUCTION STEP FUNCTION
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& |-

W s

L |

1 2 3 4 p)

|

|~
C o —0————@——— —— -~

FIGURE 3: DISTANCE FUNCTION FOR THE PRODUCTION STEP FUNCTION
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1e{0,1,2, 3, ...}, L(u = {x | x > (1 + 1)} . Hence the corresponding

intersection £ is (1 + 1) and

1

1 1
xR =TT

The function i-W(u,x) is clearly not lower semi-continuous because let u = 2 |
for example. Then, for any u > 2 , no matter how close to u =2 ,

1 1

= ¥(u,x) < ;-W(Z,x) -a or Y(u,l) < ¥(2,1) - a for 0 <a <1l and u > 2

However, the distance function is upper semi-continuous for all x € leJ D2'
and we proceed to verify this statement.
Let x be any point belonging to D1\J D2' , and consider an arbitrary value

of ue (0,») , say u - Corresponding to u,

\y(u ,X) = .LILLL.
° [1€°1]

where £ = )X x and X =Min 2 for Ax e L(u ) (see (2)). For all u>u_ ,
o (o) (o] 0 = (o]

Y(u,x) < W(uo,x) (see property D.8) and for any a > 0 , ¥(u,x) < W(uo,x) + a
if u> u . Hence, to show the upper semi-continuity of VY(u,x) we need concern

ourselves cnly with values u < a - Now for all scalars A such that

A
o

ar + 1
o

A
o
(c)\o + 1) SRS )‘ox

£

0
1+ ) a S 50
o

< A < A
o

we have

and

where £ 1s a point on the ray {ix | A2 0} . For such points ¢ it is clear

for any o > O that
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C Ll L L] THTR
W(U,X) HEH IIEOH (1 + )\oa) 3 + a lP(llo,}'{) +a .,

o]

3

Let u = Max u for =——— ¢ L(u) and u <u , since Eo = A X where
1+Aoa o o

b ]

Ao = Min A for Ax ¢ L(uo) . Then, for all ue (uu)] and u > u_
o =

Y(u,x) < W(uo,x) + a for any a > 0 , and the distance function is upper semi-

continuous.
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3. EXPRESSION OF THE PRODUCTION FUNCTION IN TERMS OF THE DISTANCE
FUNCTION V¥ (u,x)

It is clear from Figure 2 and the discussion related thereto that the largest
output rate related to an input vector x° cannot be determined merely from the

equation
Y(u,x) = 1 , (4)

since the output rate is not always uniquely determined by this relation. In fact,
if the production function ¢(x) 1is discontinuous at a point x° (as illustrated

in Figure 4) equation (4) is satisfied by all wu ¢ [ul,uol where u, = Sup®(kx°)
A<l

and u = ng u
x €L(u)

The connection between the production function and the distance function is
evidently given by
Max u for any x ¢ D U D'
¥(u,x)>1 ‘
d(x) = (5)

0 for any x ¢ {0} UD " .

The Max u 1in (5) exists for x ¢ Dl\J D2' , because x ¢ L(u) 1if and only if

¥ (u,x) 2 1 (see Proposition 1) and Max u has been shown to exist (see [3]).
xeL (u)

If x e {0}V D2" , then from (1) V¥(u,x) = 0 for all u > 0 and the inequality
¥(u,x) P 1 cannot be satisfied by any positive output rate u . However, when
x = 0 then ¢(x) = 0 (see property A.1) and when x ¢ D2" we have by the
definition of Dz" that (Ax) ¢ L(u) for any u > 0, » > 0 . Thus in (5) the
formula ¢(x) = 0 for x e {0} L D2" 1s valid.

Hence the definition of the production function given by (5) 1is equivalent

to Max u and the function so defined satisfies the properties A.l, ... A.6
xe L (u)

(see [3]). Accordingly the distance function may be used to define the technolo-

gical alternatives in production, since the production possi™ility sets L(u) may



o (1x°)

Y(u,x") =1 u e [ul.uu]

- s - }lx

FIGURE 4: NONUNIQUENESS IN u OF DISTANCE FUNCTION



be determined from it by (3) and the maximum output obtainable for any input

vector x € D 1is given in terms of V¥(u,x) by (5).

17
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4. THE DISTANCE FUNCTION OF A HOMOTHETIC PRODUCTION STRUCTURE

As defined in [3], a homothetic production structure is one with a pre-
duction function of the form F(¢(x)) where ¢(x) 1is a homogeneous function
satisfying A.1, ... A.6 and F(-) 1is any nonnegative, continuous, strictly in-
creasing function with F(0) = 0 and F(v) > » as v + o« , As shown in [3]
(see Proposition 6), the homothetic production function F(¢(x)) 1is continuous

for xeD.

The production possibility sets (level sets) of the homothetic production

structure are

LF(u) = {x | F(o(x)) >u, x e D}

= {x | ¢(x) > f(u) , x e D} = L¢(f(u))

where f(u) 1is the inverse function of F(:) . For the positive output rate u ,

the level sets may be defined by

>
»
[RY]

() 1 ,xeD

L¢(f(u)) ={x

which suggests (see Proposition 1) that the distance function of a homothetic

production structure is given by

W(u,x)=%§% L w50 . (6)

If x ¢ {O}k)Dz" , then ¢(0) = 0 since ¢(x) has the property A.l and
d(x) = 0 for x € D2" by Jefinition of the set D2" , while f(u) > 0 for
u > 0 . Thus the expression (6) is valid when x ¢ {0} U D2" :

If % & leJ D2' and u >0, let & = on denote the point on the ray
{xx | A 2 0} where AO equals the Min A for Mx € L(u) . The point ¢ = on
is a boundary point of the level set L¢(f(u)) and, since ¢(x) 1is continuous

and strictly increasing along the ray {ix | A > 0}, it follows that
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o(g) = AOQ(x) = f(u) . Hence

£Q0)

A ™ (x)

, ®(x) > 0 .

Then, using the definition (1) for any x € DI\J D2'

\}'(u’x) = Axx = —i—— = M
(o] (o}

and (6) is a proper formula for the distance function of a homothetic production
structure.

That the expression (6) satisfies some of the properties D.1, ... D.1ll is
more or less evident. Property D.1 has been shown above in verifying the equi-
valence for (6) with (1). For x finite, ¢(x) satisfies A.2 and is finite with
f(u) > 0, and also ¢(x) > 0 for x ¢ DILJDZ' since ®(Ax) > 0 for some
A > 0 and the homogeneity of ¢(Ax) implies &(x) > O . Thus D.2 holds.

Property D.3 holds, since

d(\x) . A0 (%)
f (u) f (u)

¥Y(u,Ax) = = A¥(u,x)

due to the homogeneity of &(x) . The satisfaction of the properties D.4, D.6,
and D.7 is less obvious. But since ¢(x) 1is nondecreasing in x (A.3),
homogeneous, upper semi-continuous (A.5) and quasi-concave (A.6) for all x e D ,
it follows from Proposition 6 of [3] that &(x) is a super-additive, concave and
continuous function of x for all x € D . Then property D.6 follows directly
from the nonnegativity and super-additivity of ¢(x) . Property D.8 follows
directly from the strictly increasing property of £(u), aad D.9 holds since

f(u) > * as u > » , However property D.10 is strengthened to: for any

X € DI\J Dz" the distance function 2152'* o as u->0 since f(u) > 0 as

f(u)
u~> 0, while for x ¢ {0}UD" , ¢(x) = 0 and 2Hx) 0 for all u e (0,o) .
2 f (u)
Finally, D.11 is strengthened to %éﬁ% is continuous for all u ¢ (0,®) , since

f(u) 1is a continuous function of u .
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In general, no simple explicit formula like (6) relates the production
function ¢(x) and the distance function VY(u,x), when the production structure

is not homothetic. However, for any x ¢ D1 L)Dz' .

X
‘y(u, W(U,x)) =1

due to the homogeneity of the distance function, and the point lies on

X
¥ (u,x)
the boundary of the level set L(f(u)) , taking F(%(x)) as the production

function with ¢(x) satisfying only A.1l, ... A.6. On the boundary of L(f(u))
we have &(x) = f(u) , if u 1is a realizable output rate. Thus, if the output

%
rate u 1is "realizable," the production function and distance function are

X
) <;?::;T) = f(u) . @))

related by

*i.e., one for which there exists x such that &(x) = u .
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ADDENDUM TO
K
T THE DISTANCE FUNCTION OF A PRODUCTION STRUCTURF 3J
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:njf“”:\'
Ronald W. Shephard ) i
ORC 67-4 ~  NOV
September 1967 U 8 1vos
U-- {
, LWLy [, ;
(1) Page 3, definition (1): ~ B

e—

Modify to include Y¥(0, x) =+ = for all x ¢ D , by considering

the extended real number system with + = adjoined to denote

supu . For x > 0 (semi-positive) it is intuitively clear why this 2 !
u>0
extended definition is used and when x = 0 the same definition will :
A
serve our purposes. i ‘
1
3
(2) Page 5, Proposition 1: 4
Write equation (3) as: .
;.
L(u)={x|‘i‘(u,x):l,x:O},u:O 3
| ‘ s
- S
since, with V¥*(0, x) = + » for all x e D, it is clear that L(0) =D . 4
3 a
F (3) Page 7, Proposition 3:

; Restate to include u = 0 , by the following alterations:

D.1 ¥(,x) =+« V xeD, and ¥(u, x) =0
| Vu>0, xe (0} UD) .
| D.2 For all u >0, ¥Y(u, x) 1s finite for finite x ¢ D and
positive for x e D; u Dé .

D.3 ‘l’(u,Ax)=A‘l’(u,x)Vu:O,A:O,xeD,but A=u$0.

D.4 ¥(z, x+y) 2 ¥(u, x) +¥(u,y) V u>0,xeD, yeD.




D.5 ¥(u, x') 2¥(u, x) V u 20, {f x' 2 x .
D.6 ¥(u, x) 1s a concave function of x on D for all u 20,
D.7 ¥(u, x) 1is a continuous function of x on D for all u>0.,

D.8 For any x ¢ D, W(uz, x) < W(ul, x) if u, 2 u; >0.
D.9 For any x ¢ D, lim inf Y(u, x) =0 ,

U-roo

D.10 For any x ¢ D, lim inf ¥(u, x) St+= and <« ig possible.
u+0

e -

D.11 For any x ¢ D, ¥(u, x) 1is an upper semi-continuous function

of u for all u e [0, =) .

Property D.10 as stated here is a simplification of statement suitable

for our purposes. The possibility of 1im inf ¥(u, x) being bounded
u+0

still applies and is indicated by the inequality sign.
These restatements of the properties evidently hold when

¥(0, x) = + » for all x eD .

(4) Page 15, Equation (5) should be restated ag:
¢(x) = Max {u | ¥(u, x) 21}, x e D (5)

to include the casc where x ¢ {0} U D; - This extension is correct,

because
{u | ¥(u, x) 21, xe (O} U Dy} = {0}
and hence for x ¢ {0} U D;

¢(x) = Max {u | ¥(u, x) >1} =0

< SRR A




The alteration of property D.10 suggested at the bottom of Page 19

should be omitted in favor of the revised D.10 stated above, which is

clearly satisfied by ¢(x)/f(u) for all x ¢ D, u e [0, =) .

?’c’-




